
 Expert View

The pharmaceutical industry is currently 
undergoing a period of rapid innovation, 
propelled by several factors. These include 
advancements in the development of 
biologics, which are becoming increasingly 
diverse,1 decentralised healthcare practices 
and a shift towards administering injections 
less frequently in at-home settings.2 
Additionally, small molecules are being 
designed using artificial intelligence (AI) 
drug discovery techniques.3 While these 
therapeutic innovations hold promise, they 
can also bring forth unforeseen challenges 
in drug formulationand delivery.

These challenges can include ensuring 
the stability of large or fragile biologics 
at higher therapeutic concentrations or 
improving the solubility of poorly soluble 
APIs. Overcoming these hurdles can 
require the implementation of sophisticated 
solutions, such as microcarriers, adjuvants, 
excipients and stabilising matrices.4 It is 
crucial to recognise that these formulations 
profoundly impact the physical properties 
of drugs and can present challenges for 
parenteral drug delivery, especially in rapid, 
automated systems such as autoinjectors.

One example of this is high- 
concentration monoclonal antibodies, 
which can experience aggregation under 
agitation-induced stress. Stabilising matrices 
composed of polymer, lipid crystal or 
polysaccharide gels can offer improved 
stability and efficacy but can exhibit non-
Newtonian flow behaviour. This is also 
true for long-acting injections composed 
of particulate suspensions where particle 
particle interactions and alignment can 
result in the same.

The modelling of syringeability and 
delivery of parenteral formulations has 
often focused on Newtonian models and 
the Hagen-Poiseuille equation. While this 
generally performs well, it is not suitable for 
predicting the behaviour of non-Newtonian 
fluids. This is because non-Newtonian fluids 

do not uniformly thicken or thin as they 
pass through a needle; rather, this effect 
occurs near the needle wall where the fluid 
experiences the highest shear.

For shear-thinning fluids, this 
phenomenon results in plug-like flow, 
which can be seen in the dispensation of 
fluids such as toothpaste. This results in 
a very different volumetric flow rate at a 
given pressure. In autoinjectors, this issue is 
further complicated by the decay of delivery 
force over the stroke, which is characteristic 
of most devices powered by springs or gas.

To tackle this challenge, this article 
presents an overview of solutions to 
non-Newtonian fluids described by 
the power law, Cross and Carreau 
models. The aim is to provide a toolbox 
to assist the integration of formulation 
development and device design. Specifically, 
it examines model solutions in the context 
of an autoinjector where the delivery force 
varies throughout the delivery process. 
Adopting a standardised approach to 
predictive modelling can enable the 
industry to make well-informed decisions 
early on and provide valuable insights 
into potential device parameters during 
formulation development.

In this article, Alex Vasiev, PhD, Principal Biomedical Engineer at Springboard, 

discusses the challenges inherent in understanding flow rates in injectable drug 

delivery when dealing with non-Newtonian fluids, and provides an overview of how 

to calculate flow rates for power law, Carreau and Cross fluids.
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Container
• Volume (V) 
• Diameter (D)

Spring 
• Spring starting force (F0) 
• Extension (x)
• Spring rate (k)

Needle
• Diameter (d)
• Length (l)

Formulation
• Effective viscosity (µeff)

Plunger stopper
• Stroke (L)
• Glide force (Ff)

DEFINING THE PARAMETERS 
OF AN AUTOINJECTOR

Consider an autoinjector comprising a primary container with a liquid 
volume V and an internal diameter D (Figure 1). For illustration, 
it is assumed that any bubble volume in the container vanishes once 
the container is pressurised, although this can be accounted for if 
needed. The liquid occupies a fraction of the container length L 
equivalent to the delivery stroke:
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In this example, the work required to deliver the drug is performed by the force of a compression 
spring, following Hooke's law, pushing on a rubber plunger stopper within the container: 
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Here, F is the force at a particular instance during delivery, 𝐹𝐹* is the force at the start of delivery, k is 
the spring constant and x represents the spring extension, which, for simplicity, is assumed to 
correlate to the plunger stopper displacement. The system generates pressure within the container, 
which, due to the spring constant k, diminishes as delivery progresses. This case is true for most 
autoinjectors powered by helical compression springs or gas springs. In the event of a system 
providing constant force, such as an electronic driver or subliming substance, the delivery occurs 
under a near-steady state. 
 
The force F exerted by the delivery system, after accounting for frictional losses (glide force Ff), 
creates a pressure P within the container proportional to its cross-sectional area A. This produces a 
flow rate Q through the needle proportional to the hydrodynamic resistance of the needle (length 
and diameter), as well as the effective viscosity of the fluid. It is assumed here that no back pressure 
is present and, therefore, that P within the container is equivalent to ΔP across the needle.  
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Here, F is the force at a particular instance during delivery, 
F0 is the force at the start of delivery, k is the spring constant and 
x represents the spring extension, which, for simplicity, is assumed 
to correlate to the plunger stopper displacement. The system 

generates pressure within the container, which, due to the spring 
constant k, diminishes as delivery progresses. This case is true for 
most autoinjectors powered by helical compression springs or gas 
springs. In the event of a system providing constant force, such as an 
electronic driver or subliming substance, the delivery occurs under a 
near-steady state.

The force F exerted by the delivery system, after accounting 
for frictional losses (glide force Ff), creates a pressure P within the 
container proportional to its cross-sectional area A. This produces 
a flow rate Q through the needle proportional to the hydrodynamic 
resistance of the needle (length and diameter), as well as the effective 
viscosity of the fluid. It is assumed here that no back pressure is 
present and, therefore, that P within the container is equivalent to 
ΔP across the needle.

MODELLING NON-NEWTONIAN FLUIDS

The viscosity and shear relationships for non-Newtonian fluids 
described by the power law, Carreau and Cross fluid models are 
shown in Table 1.5,6

Table 1: Definition of common Newtonian and non-Newtonian fluid models with examples.

Figure 1: Illustration of autoinjector parameters for the 
definition of injection time, omitting losses in available force 
to bubble compression and friction.
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Defining Volumetric Flow Rate
The local velocity of the liquid in a needle depends on the distance 
r from the centre axis. Here a definition of volumetric flow rate 
adapted from a method attributed to Weissenberg, Rabinowitsch, 
Mooney and Schofield (WRMS)5,6 is used, and combined with 
definitions for an autoinjector mechanism:

The local velocity of the liquid in a needle depends on the distance r from the centre axis. Here a 
definition of volumetric flow rate adapted from a method attributed to Weissenberg, Rabinowitsch, 
Mooney and Schofield (WRMS)5,6 is used, and combined it with definitions for an autoinjector 
mechanism: 
 

	𝑄𝑄 = 		
𝜋𝜋𝑅𝑅+

𝜏𝜏,+
: �̇�𝛾𝜏𝜏)𝑑𝑑𝜏𝜏	, where	𝛾𝛾	̇ 𝑖𝑖𝑖𝑖	�̇�𝛾(𝑟𝑟), 𝜏𝜏	𝑖𝑖𝑖𝑖	𝜏𝜏(𝑟𝑟)	𝑎𝑎𝑎𝑎𝑑𝑑	𝜏𝜏, = 	𝜏𝜏(𝑟𝑟 = 𝑅𝑅) =

𝑅𝑅Δ𝑝𝑝
2𝑙𝑙

	
-!

*
 

 
From this, an integral 𝐼𝐼 is derived.6 It is this integral that requires solving to determine the volumetric 
flow rate for a specific fluid model: 
 

𝐼𝐼 = : �̇�𝛾𝜏𝜏)𝑑𝑑𝜏𝜏
-!

*
 

 
Substituting specific terms for τ and dτ followed by integration provides an analytical solution for a 
model of interest. In the case of a Newtonian fluid, this results in the familiar Hagge-Poiseuille 
equation:  
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Non-Newtonian Behaviour 
  
It is useful to initially define power law fluid behaviour, as it underpins both the Carreau and Cross 
fluid models. A power law fluid flow profile is not parabolic (plug flow) and affects its volumetric flow 
rate at a given differential pressure. The magnitude of shear dependency is governed by a flow 
behaviour index n, while the overall viscosity is regulated by the flow consistency index K. Unlike the 
Cross and Carreau models, the power law fluid equation for injection time can be analytically solved, 
as previously reported.7 The normalised transition from parabolic to plug flow, as the value of n 
decreases, is illustrated in Figure 2. 
 
The analytical solution for injection time is found from the definition of the power law fluid 
volumetric flow rate: 
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Expanding for I and substituting container diameter D for container radius R gives:  
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Where F is the applied force, D is the container diameter, d is 
the needle diameter, l is the needle length, K is the flow consistency 
index and n is the flow behaviour index. This is combined with the 
two equations describing the autoinjector to obtain a relation for 
plunger motion over time7 (note that k for spring index is similar in 
appearance to K the flow consistency index):

Where F is the applied force, D is the container diameter, d is the needle diameter, l is the needle 
length, K is the flow consistency index and n is the flow behaviour index. This is combined with the 
two equations describing the autoinjector to obtain a relation for plunger motion over time7 (note 
that k for spring index is similar in appearance to K the flow consistency index): 
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For the purpose of integration, this is simplified by introducing a constant C: 
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Integration over the stroke results in an analytical solution for injection time for a power law fluid 
from an autoinjector with a specific needle geometry and spring design: 
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Formulations With Time-Dependent Non-Newtonian Behaviour 
 
Cross and Carreau fluids are more complex, behaving as power law fluids at intermediate rates and 
Newtonian fluids at both high and low shear rates (Error! Reference source not found.). They 
require the definition of four-parameters including low-shear and high-shear viscosities (𝜇𝜇*, 𝜇𝜇$), a 
characteristic time λ and a flow behaviour index n.  
 
Finding an analytical solution as the one shown for a power law fluid is not possible because the 
relationship between flowrate and pressure drop needs to be defined implicitly, requiring a 
numerical solver. The two solutions start with the same definition from the WRMS method as 
before,4,5 where: 
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Integration over the stroke results in an analytical solution for 
injection time for a power law fluid from an autoinjector with a 
specific needle geometry and spring design:

Where F is the applied force, D is the container diameter, d is the needle diameter, l is the needle 
length, K is the flow consistency index and n is the flow behaviour index. This is combined with the 
two equations describing the autoinjector to obtain a relation for plunger motion over time7 (note 
that k for spring index is similar in appearance to K the flow consistency index): 
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Formulations With Time-Dependent Non-Newtonian Behaviour 
 
Cross and Carreau fluids are more complex, behaving as power law fluids at intermediate rates and 
Newtonian fluids at both high and low shear rates (Error! Reference source not found.). They 
require the definition of four-parameters including low-shear and high-shear viscosities (𝜇𝜇*, 𝜇𝜇$), a 
characteristic time λ and a flow behaviour index n.  
 
Finding an analytical solution as the one shown for a power law fluid is not possible because the 
relationship between flowrate and pressure drop needs to be defined implicitly, requiring a 
numerical solver. The two solutions start with the same definition from the WRMS method as 
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Formulations With Time-Dependent Non-Newtonian Behaviour
Cross and Carreau fluids are more complex, behaving as power 

law fluids at intermediate rates and Newtonian fluids at both 
high and low shear rates (Figure 3). They require the definition of 
four parameters including low- and high-shear viscosities (μ0,μ∞), 
a characteristic time λ and a flow behaviour index n.

Finding an analytical solution as the one shown for a power law 
fluid is not possible because the relationship between flow rate and 
pressure drop needs to be defined implicitly, requiring a numerical 
solver. The two solutions start with the same definition from the 
WRMS method as before,4,5 where:

Where F is the applied force, D is the container diameter, d is the needle diameter, l is the needle 
length, K is the flow consistency index and n is the flow behaviour index. This is combined with the 
two equations describing the autoinjector to obtain a relation for plunger motion over time7 (note 
that k for spring index is similar in appearance to K the flow consistency index): 
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 Expert View

Figure 2: Illustration of the change from a parabolic flow 
profile to plug flow for a power-law fluid with decreasing flow 
behaviour index n.
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Carreau Fluid
To solve the integral and calculate volumetric flow rate, 
the equation defining viscosity for a Carreau fluid is introduced, 
substituting δ= (μ0-μ∞) and n -1 = n’:

Where F is the applied force, D is the container diameter, d is the needle diameter, l is the needle 
length, K is the flow consistency index and n is the flow behaviour index. This is combined with the 
two equations describing the autoinjector to obtain a relation for plunger motion over time7 (note 
that k for spring index is similar in appearance to K the flow consistency index): 
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Substituting for τ and  dτ into the definition of integral I, changing 
the integration limits and solving analytically results in a large 
equation.6

The only thing needed to calculate I is γ ̇w which can be obtained 
numerically using:

 
Substituting for 𝜏𝜏 ad  𝑑𝑑𝜏𝜏 into the definition of integral I, changing the integration limits and solving 
analytically results in a large equation.6 
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Cross Fluid 
 
The solution of a cross fluid is similar:  
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These are substituted into I and solved.6 As with the Carreau model, only  �̇�𝛾, is required to do this 
numerically using the equation: 
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APPLICATION TO AN AUTOINJECTOR PROBLEM 
 
In an autoinjector, Q can be converted to the rate of change of the plunger position over time dx/dt, 
which correlates to an incremental reduction in available delivery force. The computation of 
injection time for Cross and Carreau fluids requires an incremental, numerical approach.  
 
Initially the autoinjector system is considered at x = 0 and t = 0. The procedure is to start with the 
determination of ΔP, �̇�𝛾, , I and, finally, flowrate Q at x(t=0) = 0 and F(x=0) = F0. Q is subsequently 
converted into a change of plunger stopper position over an increment. The new level of force at 
this spring extension is used to again calculate ΔP, �̇�𝛾,, I  and Q. Injection time is the sum of time 
intervals until the point where x = L, with smaller increments being preferable. 
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If the autoinjector supplies a constant force, the system can be treated as a steady state over the 
interval from x = 0 to x = L. 
 
Determination of Constants 
 
The determination of the best fitting model, as well as of the relevant model parameters, is achieved 
by fitting the models presented in Error! Reference source not found. to data of the log of the 
dynamic viscosity against the log of the shear rate. Solvers in programming languages such as 
MATLAB or Python, as well as other commercially available rheology software, can be used for this. 
Before analysing the data, it is important to consider if the experimental conditions cover a 
sufficiently large span of shear rates. This is to ensure that any Newtonian to non-Newtonian 
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If the autoinjector supplies a constant force, the system can be 
treated as a steady state over the interval from x = 0 to x = L.

Determination of Constants
The determination of the best fitting model, as well as of the 
relevant model parameters, is achieved by fitting the models 
presented in Table 1 to data of the log of the dynamic viscosity 
against the log of the shear rate. Solvers in programming languages, 
such as MATLAB or Python, as well as other commercially 
available rheology software, can be used for this. Before analysing 
the data, it is important to consider if the experimental conditions 
cover a sufficiently large span of shear rates. This is to ensure 
that any Newtonian to non-Newtonian transitions are identified, 
and that the shear rates are representative of those experienced 
within an autoinjector.

CONCLUSION

The models provided in this article are a step towards a common 
toolbox for drug delivery device design and process development. 
Understanding the non-Newtonian behaviour of formulations is 
essential for ensuring the efficacy and safety of advanced therapies. 
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Figure 3: Illustration of the power law, Cross and Carreau 
apparent viscosity as a function of shear rate.

“Understanding the non-Newtonian 
behaviour of formulations is essential for 

ensuring the efficacy and safety 
of advanced therapies.”

DEEP DIVE INTO TOMORROW’S 
DRUG DELIVERY INNOVATIONS
www.ondrugdelivery.com/subscribe

51Copyright © 2024 Frederick Furness Publishing Ltd www.ondrugdelivery.com

https://www.ondrugdelivery.com/subscribe
https://www.ondrugdelivery.com


By embracing standardised modelling approaches and considering 
the complexities of non-Newtonian behaviour early in the 
development process, researchers and developers can de-risk future 
device development. This becomes more relevant as the industry 
focuses on established platform devices that may have to deliver 
increasingly sophisticated formulations in the future.
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